A realistic vascular model for BOLD signal up to 16.4 T

نویسندگان

  • B. M. Müller-Bierl
  • V. Pawlak
  • J. Kerr
  • K. Ugurbil
  • K. Uludag
چکیده

Introduction The blood oxygenation level-dependent (BOLD) signal using functional magnetic resonance imaging (fMRI) is currently the most popular imaging method to study brain function non-invasively. The sensitivity of the BOLD signal to different types of MRI sequences and vessel sizes is currently under investigation [1]. Gradient echo (GRE) sequences are known to be sensitive to larger vessels (venules and veins), whereas spin-echo (SE) sequences are generally more sensitive to smaller vessels (venules and capillaries), especially at high magnetic field strength [2, 3]. However, the widely used single vessel model is only an approximation to the realistic vascular distribution. Realistic vascular models have been proposed by Marques and Bowtell [4] and, recently, by Chen et al.[5]. We herein present a realistic vascular model (RVM) where diffusion is accounted for by a Monte-Carlo random walk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined MEG and fMRI model

An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...

متن کامل

A Fuzzy Realistic Mobility Model for Ad hoc Networks

Realistic mobility models can demonstrate more precise evaluation results because their parameters are closer to the reality. In this paper a realistic Fuzzy Mobility Model has been proposed. This model has rules which are changeable depending on nodes and environmental conditions. It seems that this model is more complete than other mobility models.After simulation, it was found out that not o...

متن کامل

Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes.

The nature of vascular contribution to blood oxygenation level dependent (BOLD) contrast used in functional MRI (fMRI) is poorly understood. To investigate vascular contributions at an ultrahigh magnetic field of 9.4 T, diffusion-weighted fMRI techniques were used in a rat forepaw stimulation model. Tissue and blood T(2) values were measured to optimize the echo time for fMRI. The T(2) of arter...

متن کامل

Calibrating the BOLD signal revisited – Calculation of oxygen metabolism for gradient- and spin-echo sequence up to 16.4T

Introduction The baseline fMRI signal and the blood oxygenation level-dependent (BOLD) signal amplitude are not a quantitative reflection of neuronal activity as physiological and physical parameters (e.g. baseline CBF, echo time, coil sensitivity ...) contribute to the the signal. One goal of quantitative fMRI is to determine oxygen metabolism (CMRO2) from fMRI data. To this end, a calibrated ...

متن کامل

An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging

Gradient and spin echo (GRE and SE, respectively) weighted magnetic resonance images report on neuronal activity via changes in deoxygenated hemoglobin content and cerebral blood volume induced by alterations in neuronal activity. Hence, vasculature plays a critical role in these functional signals. However, how the different blood vessels (e.g. arteries, arterioles, capillaries, venules and ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009